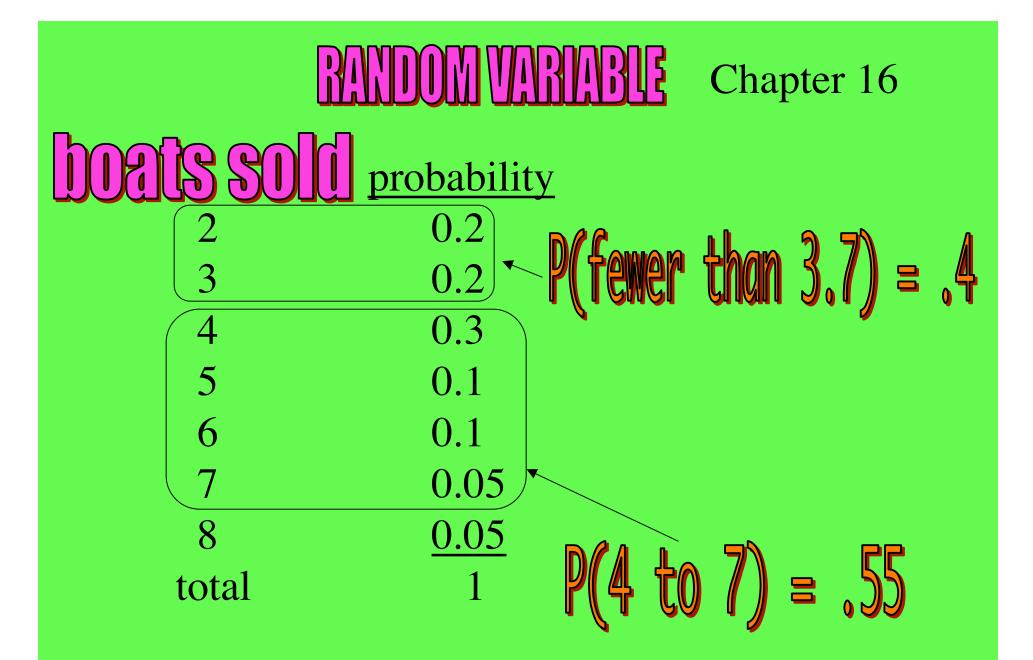
Baom Lepage Professor MUSTIMELECU/~CDATE click on STr200 Sp09

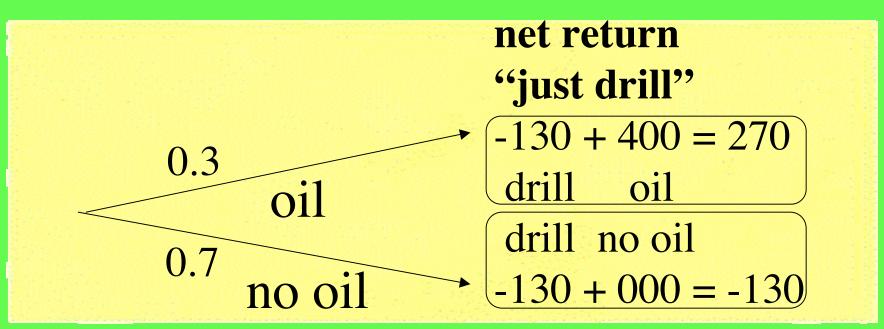
Lecture Outline, part of 3-20-09 and 3-23-09. See chapter 16.



OIL DRILLING EXAMPLE

$$P(oil) = 0.3$$

Cost to drill 130 Reward for oil 400



A random variable is just a **numerical function** over the outcomes of a probability experiment.³

EXPEGIATON

Definition of E X

E X = sum of value times probability x p(x).

Key properties E(a X + b) = a E(X) + bE(X + Y) = E(X) + E(Y) (always, if such exist)

a. E(sum of 13 dice) = 13 E(one die) = 13(3.5).
b. E(0.82 Ford US + Ford Germany - 20M) = 0.82 E(Ford US) + E(Ford Germany) - 20M regardless of any possible dependence.

	probability		
2	1/36	2/36 Of text	
3	2/36	6/36	
4	3/36	12/36 E(total)	
5	4/36	20/36	
6	5/36	30/36 migg	
7	6/36	42/36 110 3.5	
8	5/36	40/30	
9	4/36	36/36 avg for	
10	3/36	30/36 Old die	
11	2/36	22/36 F	
12	<u>1/36</u>	$\frac{22/36}{12/36}$ E(total)	
sum	1	252/36 = 7 5	

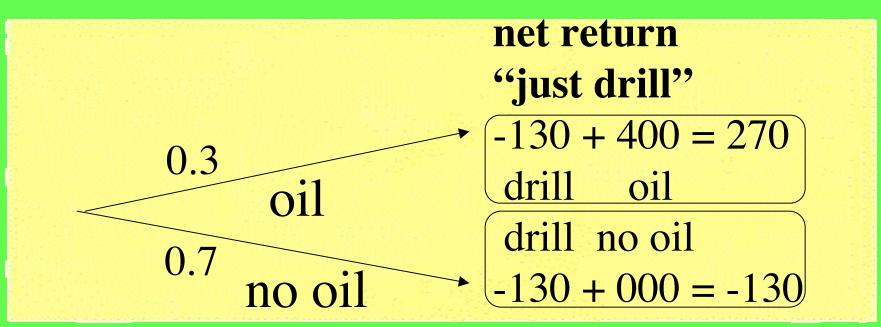
(3-17 of text)

	product	
2 probability 0.2	0.4	
3 0.2	0.6	WC AND
4 0.3	1.2	
5 0.1	0.5	405 horis
6 0.1	0.6	
7 0.05	0.35	
8 <u>0.05</u>	0.4	
total 1	4.05	
E(number of boats this mont	th)	6

OIL DRILLING EXAMPLE

$$P(oil) = 0.3$$

Cost to drill 130 Reward for oil 400



A random variable is just a **numerical function** over the outcomes of a probability experiment.⁷

EXPECTED IN THE OUTPUT Expected return from policy "**just drill**" is the probability weighted average (NET) return E(NET) = (0.3) (270) + (0.7) (-130) = 81 - 91 = -10.

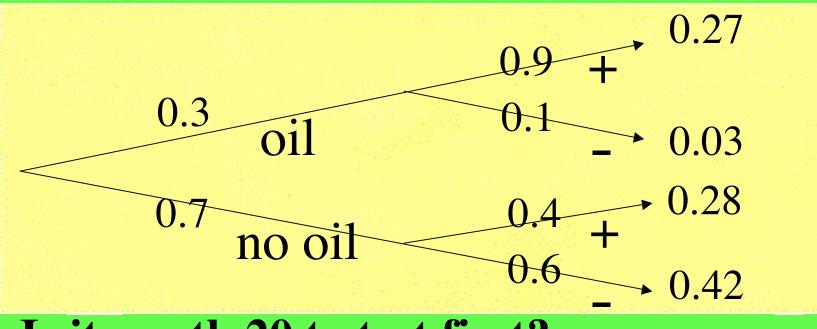
net return from policy"just drill." -130 + 400 = 270drill oil drill no-oil -130 + 0 = -130

 $\mathbf{E}(\mathbf{X}) = -10$

OIL EXAMPLE WITH A "TEST FOR OIL"

"costs" TEST 20 DRILL 130 OIL 400 A test costing 20 is available. This test has: P(test + | oil) = 0.9P(test + | no-oil) = 0.4.

9

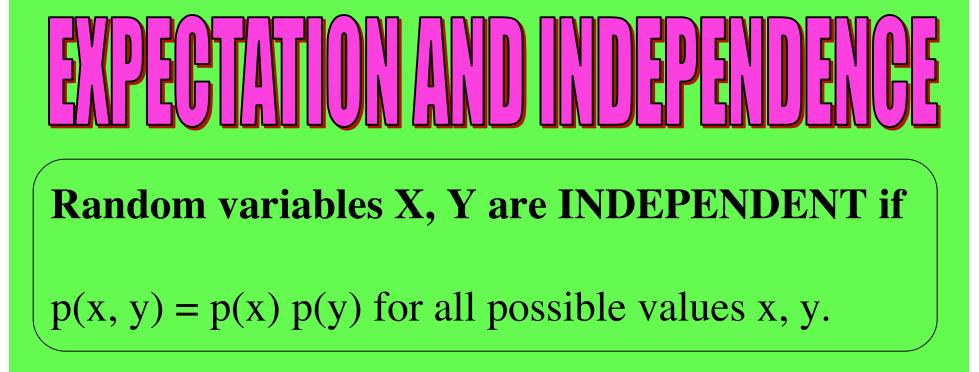


Is it worth 20 to test first?

oil = -20 - 130 + 400 = 2500.27 67.5 oil = -20 - 0 + 0 = -20- 0.6 .03 - 42.0 no oil+ = -20 - 130 + 0 = -150.28 - 8.4 no oil- = -20 - 0 + 0 = -20.42 16.5 1.00 total the test is + E(NET) = .27 (250) - .03 (20) - .28 (150) - .42 (20)= 16.5 (for the "test first" policy). This average return is much preferred over the E(NET) = -10 of the "just drill" policy. 10

Varia	IIEE	M S.			(3-17) of text		
Х	p(x)	x p(x)	$x^2 p(x)$				
2	0.2	0.4	0.8	0.8405			
3	0.2	0.6	1.8	0.2205			
4	0.3	1.2	4.8	0.0005			
5	0.1	0.5	2.5	0.09025			
6	0.1	0.6	3.6	0.38025			
7	0.05	0.35	2.45	0.435125			
8	0.05	0.4	3.2	0.780125			
total	1.00	4.05	19.15	2.7475			
quanti	i ty Dgy	E X mean	$\mathop{\mathrm{E}} olimits X^2$ mean of squar	tes $E(X - EX)^2$ variance = mean o	2 f sq dev		
s.d. = $root(2.7474) = root(19.15 - 4.05^2) = 1.6576_{11}$							

 $Var(X) = {}^{def} E (X - E X)^2 = {}^{comp} E (X^2) - (E X)^2$ i.e. Var(X) is the expected square deviation of r.v. X from its own expectation. Caution: The computing formula (right above), although perfectly accurate mathematically, is sensitive to rounding errors. **Key properties:** $Var(a X + b) = a^2 Var(X)$ (b has no effect). sd(a X + b) = lal sd(X).VAR(X + Y) = Var(X) + VAR(Y) if X ind of Y. 12



If random variables X, Y are INDEPENDENT

E(X Y) = (E X) (E Y) echoing the above.

Var(X + Y) = Var(X) + Var(Y).

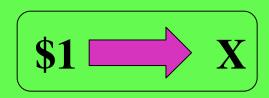
PRICE RELATIVES

Venture one returns random variable X per \$1 investment. This X is termed the "price relative." This random X may in turn be reinvested in venture two which returns random random variable Y per \$1 investment. The return from \$1 invested at the outset is the product random variable XY.

EXPECTED RETURN If INDEPENDENT, E(X Y) = (E X) (E Y). 14

PARADOX OF GROWTH

EXAMPLE:



- x p(x) x p(x) 0.8 0.3 0.24
- 1.2 0.5 0.60
- 1.5 0.2 <u>0.30</u> E(X) = 1.14

WEARER 14% PER PERIOD BUT YOU WILL NOT EARN 14%. Simply put, the average is not a reliable guide to real returns in the case of exponential growth. ¹⁵

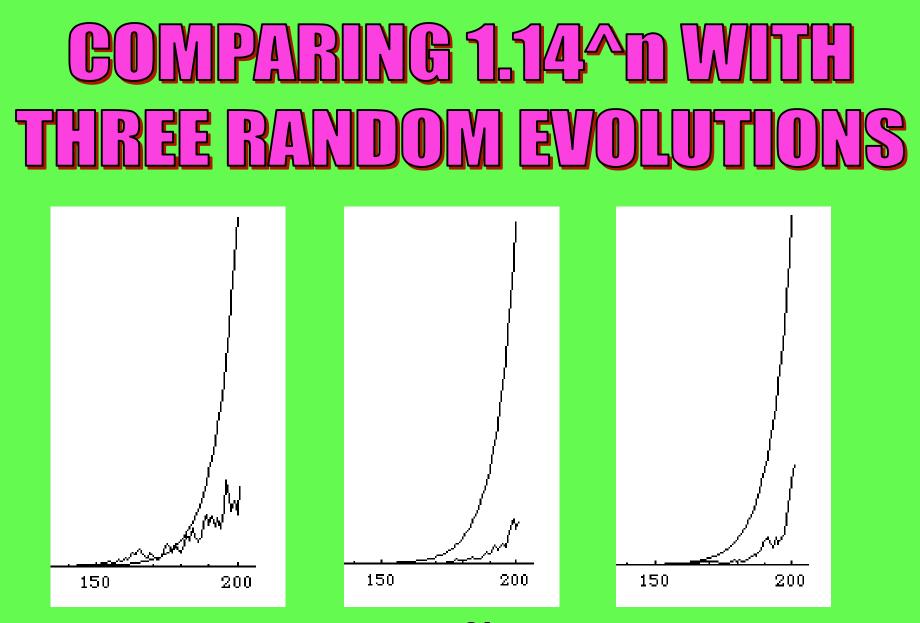
EXPECTATION GOVERNS SUMS it sums are in the exponent

\$1

EXAMPLE:

 $p(x) Log_{e}[x] p(x)$ X -0.029073 0.8 0.3 1.2 0.5 0.039591 1.5 0.2 0.035218 $E Log_{e}[X] = 0.105311$ $e^{0.105311..} = 1.11106...$

With INDEPENDENT [plays] your RANDOM return will compound at 11.1% not 14%. (more about this later in the course)



you can see that 14% exceeds reality

17

